🇩🇪
Datum auswählen
2.485,00 €Gesamt inkl. 20% Ust.
Verfügbarkeit
12 Freie Plätze
Buchbar bis Sa. 23. August 2025, 15:00
Stornierbar bis Fr. 22. August 2025, 07:00
Programm
Introduction to end-to-end analytics using Microsoft Fabric - Explore end-to-end analytics with Microsoft Fabric - Data teams and Microsoft Fabric - Enable and use Microsoft Fabric Administer Microsoft Fabric - Understand the Fabric Architecture - Understand the Fabric administrator role - Manage Fabric security - Govern data in Fabric Ingest Data with Dataflows Gen2 in Microsoft Fabric - Understand Dataflows Gen2 in Microsoft Fabric - Explore Dataflows Gen2 in Microsoft Fabric - Integrate Dataflows Gen2 and Pipelines in Microsoft Fabric Ingest data with Spark and Microsoft Fabric notebooks - Connect to data with Spark - Write data into a lakehouse - Consider uses for ingested data Use Data Factory pipelines in Microsoft Fabric - Understand pipelines - Use the Copy Data activity - Use pipeline templates - Run and monitor pipelines Get started with lakehouses in Microsoft Fabric - Explore the Microsoft Fabric Lakehouse - Work with Microsoft Fabric Lakehouses - Explore and transform data in a lakehouse Organize a Fabric lakehouse using medallion architecture design - Describe medallion architecture - Implement a medallion architecture in Fabric - Query and report on data in your Fabric lakehouse - Considerations for managing your lakehouse Use Apache Spark in Microsoft Fabric - Prepare to use Apache Spark - Run Spark code - Work with data in a Spark dataframe - Work with data using Spark SQL - Visualize data in a Spark notebook Work with Delta Lake tables in Microsoft Fabric - Understand Delta Lake - Create delta tables - Work with delta tables in Spark - Use delta tables with streaming data Get started with data warehouses in Microsoft Fabric - Understand data warehouse fundamentals - Understand data warehouses in Fabric - Query and transform data - Prepare data for analysis and reporting - Secure and monitor your data warehouse Load data into a Microsoft Fabric data warehouse - Explore data load strategies - Use data pipelines to load a warehouse - Load data using T-SQL - Load and transform data with Dataflow Gen2 Query a data warehouse in Microsoft Fabric - Use the SQL query editor - Explore the visual query editor - Use client tools to query a warehouse Monitor a Microsoft Fabric data warehouse - Monitor capacity metrics - Monitor current activity - Monitor queries Understand scalability in Power BI - Describe the significance of scalable models - Implement Power BI data modeling best practices - Configure large datasets Create Power BI model relationships - Understand model relationships - Set up relationships - Use DAX relationship functions - Understand relationship evaluation Use tools to optimize Power BI performance - Use Performance analyzer - Troubleshoot DAX performance by using DAX Studio - Optimize a data model by using Best Practice Analyzer Enforce Power BI model security - Restrict access to Power BI model data - Restrict access to Power BI model objects - Apply good modeling practices
Ziele
Dieses Training behandelt Methoden und Praktiken zur Implementierung und Verwaltung von Datenanalyselösungen im Unternehmensmaßstab mit Microsoft Fabric. Die Lernenden werden auf vorhandenen Analyseerfahrungen aufbauen und erfahren, wie Sie Microsoft Fabric-Komponenten verwenden, einschließlich Lakehouses, Data Warehouses, Notebooks, Dataflows, Datenpipelines und semantischer Modelle, um Analyseressourcen zu erstellen und bereitzustellen. Dieses Training eignet sich am besten für diejenigen, die über die PL-300-Zertifizierung oder ähnliche Expertise bei der Verwendung von Power BI für die Datentransformation, -modellierung, -visualisierung und -freigabe verfügen. Darüber hinaus sollten Lernende Vorerfahrung mit dem Erstellen und Bereitstellen von Datenanalyselösungen auf Unternehmensniveau haben.
Datum auswählen
2.485,00 €Gesamt inkl. 20% Ust.
Verfügbarkeit
12 Freie Plätze
Buchbar bis Sa. 23. August 2025, 15:00
Stornierbar bis Fr. 22. August 2025, 07:00